多元函数复合微分法PPT
多元函数的复合微分法是一个重要的数学概念,用于研究多元函数在一点的局部变化率。通过复合微分法,我们可以计算复合函数的导数或微分,这对于理解函数的性质、优化...
多元函数的复合微分法是一个重要的数学概念,用于研究多元函数在一点的局部变化率。通过复合微分法,我们可以计算复合函数的导数或微分,这对于理解函数的性质、优化问题、以及解决实际问题都非常重要。一、基本概念首先,我们需要了解什么是多元函数和复合函数。定义:设$D$是$n$维实数空间$\mathbb{R}^n$中的一个点集,如果对于每一个点$P(x_1, x_2, \ldots, x_n) \in D$,变量$z$按照一定的规律依赖于$n$个变量$x_1, x_2, \ldots, x_n$,则称$z$为$x_1, x_2, \ldots, x_n$的多元函数,记作$z = f(x_1, x_2, \ldots, x_n)$,其中$D$称为函数的定义域。定义:设$y = f(u)$在$u$的某个邻域内有定义,且$u = g(x)$在$x$的某个邻域内有定义,则通过中间变量$u$,变量$x$与$y$之间可以建立一种函数关系,称这种函数关系为复合函数,记作$y = f[g(x)]$。二、复合函数的微分法对于复合函数,我们可以通过链式法则来计算其微分。定理(链式法则):如果函数$u = g(x)$在点$x$可导,函数$y = f(u)$在点$u$可导,则复合函数$y = f[g(x)]$在点$x$也可导,且其导数为$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$这里,$\frac{dy}{du}$是函数$y = f(u)$在点$u$的导数,$\frac{du}{dx}$是函数$u = g(x)$在点$x$的导数。对于多元复合函数,链式法则同样适用。设$z = f(u, v)$,其中$u = u(x, y)$,$v = v(x, y)$,则$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$这里,$\frac{\partial z}{\partial u}$和$\frac{\partial z}{\partial v}$分别是函数$z = f(u, v)$对$u$和$v$的偏导数,$\frac{\partial u}{\partial x}$、$\frac{\partial u}{\partial y}$、$\frac{\partial v}{\partial x}$和$\frac{\partial v}{\partial y}$分别是函数$u = u(x, y)$和$v = v(x, y)$对$x$和$y$的偏导数。三、高阶复合函数的微分法对于高阶复合函数,我们可以通过多次应用链式法则来计算其微分。设$z = f(u, v)$,其中$u = u(x, y)$,$v = v(x, y)$,且$u = u(t, s)$,$v = v(t, s)$,则$$\frac{\partial^2 z}{\partial x^2} = \left( \frac{\partial^2 z}{\partial u^2} \cdot \left( \frac{\partial u}{\partial x} \right)^2 + 2 \frac{\partial^2 z}{\partial u \partial v} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial x} + \frac{\partial^2 z}{\partial v^2} \cdot \left( \frac{\partial v}{\partial x} \right)^2 \right) \cdot \left( \frac{\partial t}{\partial x} \right)^2$$$$+ 2 \left( \frac{\partial^2 z}{\partial u^2} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} + \frac{\partial^2 z}{\partial u \partial v} \cdot \left( \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial x} \right) + \frac{\partial^2 z}{\partial v^2} \cdot \frac{\partial v}{\partial x} \cdot \frac{\partial v}{\partial y} \right) \cdot \frac{\partial t}{\partial x} \cdot \frac{\partial t}{\partial y}$$$$\frac{\partial^2 z}{\partial x \partial y} = \left( \frac{\partial^2 z}{\partial u^2} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} + \frac{\partial^2 z}{\partial u \partial v} \cdot \left( \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial x} \right) + \frac{\partial^2 z}{\partial v^2} \cdot \frac{\partial v}{\partial x} \cdot \frac{\partial v}{\partial y} \right) \cdot \frac{\partial t}{\partial x} \cdot \frac{\partial s}{\partial y}$$$$\frac{\partial^2 z}{\partial y^2} = \left( \frac{\partial^2 z}{\partial u^2} \cdot \left( \frac{\partial u}{\partial y} \right)^2 + 2 \frac{\partial^2 z}{\partial u \partial v} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial y} + \frac{\partial^2 z}{\partial v^2} \cdot \left( \frac{\partial v}{\partial y} \right)^2 \right) \cdot \left( \frac{\partial s}{\partial y} \right)^2$$$$+ 2 \left( \frac{\partial^2 z}{\partial u^2} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} + \frac{\partial^2 z}{\partial u \partial v} \cdot \left( \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial x} \right) + \frac{\partial^2 z}{\partial v^2} \cdot \frac{\partial v}{\partial x} \cdot \frac{\partial v}{\partial y} \right) \cdot \frac{\partial t}{\partial y} \cdot \frac{\partial s}{\partial y}$$这里,$\frac{\partial^2 z}{\partial u^2}$、$\frac{\partial^2 z}{\partial u \partial v}$和$\frac{\partial^2 z}{\partial v^2}$是函数$z = f(u, v)$的二阶偏导数,$\frac{\partial u}{\partial x}$、$\frac{\partial u}{\partial y}$、$\frac{\partial v}{\partial x}$和$\frac{\partial v}{\partial y}$是函数$u = u(x, y)$和$v = v(x, y)$的一阶偏导数,而$\frac{\partial t}{\partial x}$、$\frac{\partial t}{\partial y}$、$\frac{\partial s}{\partial x}$和$\frac{\partial s}{\partial y}$是函数$u = u(t, s)$和$v = v(t, s)$的一阶偏导数。四、应用举例复合微分法在几何学中有着广泛的应用,例如计算曲面的切平面和法线、曲线的切线等。在物理学中,复合微分法常用于计算多维空间中的速度、加速度、力等物理量的变化率。在工程学中,复合微分法可用于优化问题、控制系统设计、流体力学等领域。五、总结多元函数的复合微分法是研究多元函数在一点局部变化率的重要工具。通过链式法则和高阶微分法,我们可以计算复合函数的微分,从而了解函数在该点的性质。复合微分法在几何学、物理学和工程学等领域都有广泛的应用,是数学和实际应用之间的重要桥梁。